Alessio Recati pic

Alessio Recati's Website

I am a physicist working at the INO-CNR BEC Centre in Trento (Italy).


Find more about me here


slide Cold Gases

My research activity mainly focuses on the field of ultra-cold gases. In the last years I have been addressing questions on:
Dipolar gases, Bose-Bose Mixtures, Fermi and Bose Superfluidity, Polaron Physics, Low-dimensional systems, Analog Models


Here a simple, very brief, nice visual introduction to the world of cold gases by TED.com

Short CV

Current Position:

Academic career/fellowships/awards

People

Victor Colussi Dr. Victor Colussi

Senior Post-doc: Victor, from the USA, joined our group in August 2020 thanks to a MIUR funding through the PRIN2017 CenTral project.
e-mail: victoredward.colussi at unitn.it
phone:

Daniele Contessi Mr. Daniele Contessi

PhD (funded by the Q@TN initiative): Daniele started his PhD at the end of 2019. He is a joined student with Prof. Matteo Rizzi in Köln/Jülich
e-mail: daniele.contessi at unitn.it
phone: (+39) 0461 28 3924

Santo Roccuzzo Mr. Santo Maria Roccuzzo

PhD (funded by the Q@TN initiative): Santo joined us at the end of 2018, with a project on Supersolidity and Quantum Droplet
e-mail: santo.roccuzzo at unitn.it
phone: (+39) 0461 28 3924

Matteo Sighinolfi Mr. Matteo Sighinolfi

PhD (funded by the Q@TN initiative): Matteo joined us at the end of 2018, with a project on Impurity in Cold-Gases as Open Quantum Systems
e-mail: matteo.sighinolfi at unitn.it
phone: (+39) 0461 28 3924

Sebastiano Bresolin Mr. Sebastiano Bresolin

PhD: Sebastiano joined us at the end of 2020 thanks to a UniTN fellowship.
e-mail: sebastaino.bresolin at unitn.it
phone:

Marjia Sindik Ms. Marjia Sindik

PhD (funded by the Q@TN initiative): Marjia joined us in October 2021, with a project on dipolar and spinor gases
e-mail: sebastaino.bresolin at unitn.it
phone:

News

(Hover on the images for a 2x zoom)

spintorque Quantum-torque-induced breaking of magnetic domain walls in ultracold gases

A rich variety of physical effects in spin dynamics arise at the interface between different magnetic materials1. Engineered systems with interlaced magnetic structures have been used to implement spin transistors, memories and other spintronic devices2,3. However, experiments in solid-state systems can be difficult to interpret because of disorder and losses. Here we realize analogues of magnetic junctions using a coherently coupled mixture of ultracold bosonic gases. The spatial inhomogeneity of the atomic gas makes the system change its behaviour from regions with oscillating magnetization—resembling a magnetic material in the presence of an external transverse field—to regions with a defined magnetization, similar to magnetic materials with ferromagnetic anisotropy stronger than external fields. Starting from a far-from-equilibrium fully polarized state, magnetic interfaces rapidly form. At the interfaces, we observe the formation of short-wavelength magnetic waves. They are generated by a quantum torque contribution to the spin current and produce strong spatial anticorrelations in the magnetization. Our results establish ultracold gases as a platform for the study of far-from-equilibrium spin dynamics in regimes that are not easily accessible in solid-state systems.
A. Farolfi, A. Zenesini, D. Trypogeorgos, C. Mordini, A. Gallemí, A. Roy, A. Recati, G. Lamporesi and G. Ferrari, Nature Phys. 17, 1359 (2021)

Andreev-Bashkin correlation Linear Response Study of Collisionless Spin Drag

In this work we are concerned with the understanding of the collisionless drag or entrainment between two superfluids, also called Andreev-Bashkin effect, in terms of current response functions. The drag density is shown to be proportional to the cross transverse current-current response function, playing the role of a normal component for the single species superfluid density. We can in this way link the existence of finite entrainment with the exhaustion of the energy-weighted sum rule in the spin channel. The formalism is then used to reproduce some known results for a weakly interacting Bose-Bose mixture. Finally we include the drag effect to determine the beyond mean-field correction on the speed of sound and on the spin dipole excitations for a homogeneous and trapped gas, respectively.
D. Romito, C. Lobo, A. Recati, Phys. Rev. Research 3, 023196 (2021)

drag in a ring Collisionless drag for a one-dimensional two-component Bose-Hubbard model

We theoretically investigate the elusive Andreev-Bashkin collisionless drag for a two-component onedimensional Bose-Hubbard model on a ring. By means of tensor network algorithms, we calculate the superfluid stiffness matrix as a function of intra- and interspecies interactions and of the lattice filling. We then focus on the most promising region close to the so-called pair-superfluid phase, where we observe that the drag can become comparable with the total superfluid density. We elucidate the importance of the drag in determining the long-range behavior of the correlation functions and the spin speed of sound. In this way, we are able to provide an expression for the spin Luttinger parameter K_S in terms of drag and the spin susceptibility. Our results are promising in view of implementing the system by using ultracold Bose mixtures trapped in deep optical lattices, where the size of the sample is of the same order of the number of particles we simulate. Importantly, the mesoscopicity of the system, far from being detrimental, appears to favor a large drag, avoiding the Berezinskii-Kosterlitz-Thouless jump at the transition to the pair-superfluid phase which would reduce the region where a large drag can be observed.
Daniele Contessi, Donato Romito, Matteo Rizzi, Alessio Recati, Phys. Rev. Research 3, L022017 (2021)

honeycomb of vortices BEC Quantized vortices in dipolar supersolid Bose-Einstein condensed gases

We have characterized quantized vortices in a dipolar Bose-Einstein condensed, focusing on the supersolid regime. We have found in particular that (i) the angular momentum per particle associated with the vortex line is smaller than ℏ, reflecting the reduction of the global superfluidity; (ii) the nucleation in a rotating trap is triggered -- as for a standard condensate -- by the softening of the quadrupole mode; (iii) many vortices can be arranged into a honeycomb structure, which coexists with the triangular geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.
A. Gallemì, S. M. Roccuzzo, S. Stringari, A. Recati, Phys. Rev. A 102, 023322 (2020)

moment of inertia supersolid A quantum Gutzwiller approach for the Bose-Hubbard model

We have developed the equivalent of Bogoliubov theory (for weakly interacting Bose gases) for the Bose-Hubbard model, but starting from the Gutzwiller ansatz. We find that the approach is extremely well suited to calculate the correlations of the systems. The model is benchmarked against the available QMC result. The approach is very promising in order to calculate dynamical properties of the BH model.
F. Caleffi, M. Capone, C. Menotti, I. Carusotto, A. Recati, Phys. Rev. Research 2, 033276 (2020)

moment of inertia supersolid Rotating a Supersolid

A supersolid shows both solid and superfluid properties. By rotating it you can clearly see that the moment of inertia is strongly reduced due to the superfluid irrotational flow. Even when the global superfluid behaviour diseapper the moment of inertia show reduction due to the single droplet (local) superfluidity.
S. M. Roccuzzo, A. Gallemì, A. Recati, S. Stringari, Phys. Rev. Lett. 124, 045702 (2020)

Alessio Recati's Pubblications

Full list here (PDF)

Scroll down for summary

Pre-Print

  1. Moment of Inertia and Dynamical Rotational Response of a Supersolid Dipolar Gas
    S. M. Roccuzzo, A. Recati, S. Stringari
    arXiv:2112.12749
  2. Observation of Massless and Massive Collective Excitations with Faraday Patterns in a Two-Component Superfluid
    Riccardo Cominotti, Anna Berti, Arturo Farolfi, Alessandro Zenesini, Giacomo Lamporesi, Iacopo Carusotto, Alessio Recati, G. Ferrari
    arXiv:2112.09880
  3. Stochastic Dynamics and Bound States of Heavy Impurities in a Fermi Bath
    Matteo Sighinolfi, Davide De Boni, Alessandro Roggero, Giovanni Garberoglio, Pietro Faccioli, Alessio Recati
    arXiv:2111.11973
  4. Quantum Gutzwiller approach for the two-component Bose-Hubbard model
    V. E. Colussi, F. Caleffi, C. Menotti, A. Recati
    arXiv:2110.13095
  5. Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks
    D. Contessi, E. Ricci, A. Recati, M. Rizzi
    arXiv:2110.05383
  6. Coherently Coupled Mixtures of Bose-Einstein Condensed Gases
    Alessio Recati, Sandro Stringari
    arXiv:2108.10159
  7. Supersolid edge and bulk phases of a dipolar quantum gas in a box
    S. M. Roccuzzo, S. Stringari, Alessio Recati
    arXiv:2104.01068

Recent publications

  1. Quantum-torque-induced breaking of magnetic domain walls in ultracold gases
    Arturo Farolfi, Alessandro Zenesini, Dimitris Trypogeorgos, Carmelo Mordini, Albert Gallemì, Arko Roy, Alessio Recati, Giacomo Lamporesi, Gabriele Ferrari
    Nat. Phys. 17, 1359 (2021)
  2. Beyond-mean-field effects in Rabi-coupled two-component Bose-Einstein condensate
    L. Lavoine, A. Hammond, A. Recati, D. Petrov, T. Bourdel
    Phys. Rev. Lett. 127, 203402 (2021)
  3. Manipulation of an elongated internal Josephson junction of bosonic atoms
    A. Farolfi, A. Zenesini, D. Trypogeorgos, A. Recati, G. Lamporesi, G. Ferrari
    Phys. Rev. A 104, 023326 (2021)
  4. High-energy Bragg scattering measurements of a dipolar supersolid
    D. Petter, A. Patscheider, G. Natale, M. J. Mark, M. A. Baranov, R. v. Bijnen, S. M. Roccuzzo, A. Recati, B. Blakie, D. Baillie, L. Chomaz, F. Ferlaino
    Phys. Rev. A 104, L0011302 (2021)
  5. Linear Response Study of Collisionless Spin Drag
    Donato Romito, Carlos Lobo, Alessio Recati
    Phys. Rev. Research 3, 023196 (2021)
  6. Collisionless drag for a one-dimensional two-component Bose-Hubbard model
    Daniele Contessi, Donato Romito, Matteo Rizzi, Alessio Recati
    Phys. Rev. Research 3, L022017 (2021)
  7. Impurity dephasing in a Bose-Hubbard model
    Fabio Caleffi, Massimo Capone, Ines de Vega, Alessio Recati
    New J. Physics 23, 033018 (2021)
  8. Finite temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture
    Arko Roy, Miki Ota, Alessio Recati, Franco Dalfovo
    Phys. Rev. Research 3, 013161 (2021)
  9. Supersolidity of cnoidal waves in an ultracold Bose gas
    Giovanni I. Martone, Alessio Recati, Nicolas Pavloff
    Phys. Rev. Research 3, 013143 (2021)
  10. Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model
    F. Caleffi, M. Capone, C. Menotti, I. Carusotto, A. Recati
    Phys. Rev. Research 2, 033276 (2020)
  11. Quantized vortices in dipolar supersolid Bose-Einstein condensed gases
    A. Gallemì, S. M. Roccuzzo, S. Stringari, A. Recati
    Phys. Rev. A 102, 023322 (2020)
  12. Rotating a supersolid dipolar gas
    S. M. Roccuzzo, A. Gallemì, A. Recati, S. Stringari
    Phys. Rev. Lett. 124, 045702 (2020)
  13. Spin-dipole mode in a trapped Fermi gas near unitarity
    Hiroyuki Tajima, Alessio Recati, Yoji Ohashi
    Phys. Rev. A 101, 013610 (2020)
  14. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas
    L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati, S. Stringari
    Nature 574, 382 (2019)
  15. Decay of the relative phase domain wall into confined vortex pairs: the case of a coherently coupled bosonic mixture
    Albert Gallemì, Lev P. Pitaevskii, Sandro Stringari, Alessio Recati
    Phys. Rev. A 100, 023607 (2019)
  16. Collisions of Self-Bound Quantum Droplets
    Giovanni Ferioli, Giulia Semeghini, Leonardo Masi, Giovanni Giusti, Giovanni Modugno, Massimo Inguscio, Albert Gallemì, Alessio Recati, and Marco Fattori
    Phys. Rev. Lett. 122, 090401 (2019)
  17. Breaking of Goldstone modes in a two-component Bose-Einstein condensate
    Alessio Recati and Francesco Piazza
    Phys. Rev. B 99, 064505 (2019)
  18. Dynamics of multiple atoms in one-dimensional fields
    Carlo Cascio, Jad C. Halimeh, Ian P. McCulloch, Alessio Recati, Ines de Vega
    Phys. Rev. A 99, 013845 (2019)

Selected Publications on the different activities

  1. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas
    L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati, S. Stringari
    Nature 574, 382 (2019)
    See also: Nature News&Views, Nat. Phys. Highlights and the related works:
    Guo et al., Nature 574, 386 (2019)
    Natale et al., Phys. Rev. Lett. 123, 050402 (2019)
  2. Collisions of Self-Bound Quantum Droplets
    Giovanni Ferioli, Giulia Semeghini, Leonardo Masi, Giovanni Giusti, Giovanni Modugno, Massimo Inguscio, Albert Gallemí, Alessio Recati, and Marco Fattori
    Phys. Rev. Lett. 122, 090401 (2019)
  3. Andreev-Bashkin effect in superfluid cold gases mixture
    Jacopo Nespolo, Grigori E. Astrakharchik, Alessio Recati
    New J. Phys., 19, 125005 (2017)
  4. Observation of repulsive Fermi polarons in a resonant mixture of ultracold 6Li atoms
    F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti, G. Roati
    Phys. Rev. Lett. 118, 083602 (2017) - Editor's suggestion
  5. Instability of the superfluid flow as black-hole lasing effect
    S. Finazzi, F. Piazza, M. Abad, A. Smerzi, A. Recati
    Phys. Rev. Lett. 114, 245301 (2015)
  6. A study of coherently coupled two-component Bose-Einstein Condensates
    Marta Abad and Alessio Recati
    Eur. Phys. J D 67, 148 (2013)
  7. Spin fluctuations, susceptibility and the dipole oscillation of a nearly ferromagnetic Fermi gas
    Alessio Recati and Sandro Stringari
    Phys. Rev. Lett. 106, 080402 (2011)
  8. Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
    A. Recati, N. Pavloff, and I. Carusotto
    Phys. Rev. A 80, 043603 (2009)
  9. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates
    I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot and A. Fabbri
    New J. Phys. 10, 103001 (2008).
    See also the extract in New Scientist:
    NEWS12 MARCH 2008
    Artificial event horizon generates Hawking radiation
  10. Photon energy lifter
    Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, I. Carusotto
    Optics Express 14 , 7270 (2006)
  11. Normal state of a polarized Fermi gas at unitarity
    C. Lobo, A. Recati, S. Giorgini,S. Stringari
    Phys. Rev. Lett. 97, 200403 (2006)
  12. Atomic quantum dots coupled to a Reservoir of a Superfluid Bose-Einstein condensate
    A. Recati, P.O. Fedichev, W. Zwerger, J. von Delft, P. Zoller
    Phys. Rev. Lett. 94, 040404 (2005)
  13. An exactly solvable model of the BCS-BEC crossover
    J.N. Fuchs, A. Recati, W. Zwerger
    Phys. Rev. Lett. 93, 090408 (2004)
  14. Spin-charge separation in ultra-cold quantum gases
    A. Recati, P. O. Fedichev, W. Zwerger, and P. Zoller
    Phys. Rev. Lett. 90, 020401 (2003)

Contributions to Books

  1. Recati, A. (2016):
    Coherently Coupled Bose gases, in "Quantum Matter at Low Termperature"
    Ed. M. Inguscio, W. Ketterle, S. Stringari and G. Roati
    Proceeding of the international School of Physics "Enirico Fermi", Course 191
  2. Balbinot, R., Carusotto, I., Fabbri, A., Mayoral, C. and Recati, A. (2013):
    Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates, in "Analogue Gravity Phenomenology in Analogue Spacetimes and Horizons, from Theory to Experiment"
    Ed. Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U., Lecture Notes in Physics vol.870 (Springer), 181-220.
  3. Recati, A., Stringari, S. (2012):
    Normal phase of Polarized strongly interacting gas, in "The BCS-BEC Crossover and the Unitary Fermi Gas",
    Ed. Zwerger, W., Lecture Notes in Physics vol.836 (Springer), 447-476.

Popular Science

Contact me

You can find me on:

Or, you can send me an email.

Address

Office 322 of the INO-CNR BEC Center

Physics Departmen of the University of Trento

Via Sommarive, 14

I - 38123 Povo (Trento)